
Component Architecture 
for the Internet
Barcelona, July 20th, 2001



Contents
Part 3: Case StudiesPart 3: Case StudiesPart 3: Case StudiesPart 3: Case Studies

Java Beans
Corba
Visual Basic and COM/DCOM
Competitiveness Marketplace
Unix Tools

Part 4: ExercisesPart 4: ExercisesPart 4: ExercisesPart 4: Exercises
Excercises
Component Library Guidelines

Part 1: MotivationPart 1: MotivationPart 1: MotivationPart 1: Motivation
Efficient Development
Specific against General
Library Weight

Part 2: TheoryPart 2: TheoryPart 2: TheoryPart 2: Theory
Concepts & Philosophies
Inheritance & Instantiation
Aggregation, Forwarding & 
Delegation
Interface Syntax: Signatures
Interface Semantics: Contracts
Patterns
Frameworks
Components



Part 1: Motivation



Efficient Development

Time = 
Functionality - Library

People * Efficiency



Specific against General

Custom/Specific Standard/General

Cost Efficiency
Flexibility,
Competitive Edge



Library Weight

Specific Library Standard Library

Configuration 
Complexity

Swing

AWT

SAP

Usefulness



Part 2: Theory 



Concepts & Philosophies

Framework

Interface

Class

Contract

ForwardingDelegationInheritance

Pattern

Object

Specializat.

Generalizat.

Granularity

Standard

Custom

Re-Use
Component



Inheritance & Instantiation

Subclass

Inheritance

Object

Penguin

Penguin 01

Object

Vulture 13

Instantiation

Class

Subclass

Vulture

Bird

Object

ClassClass

Class / Object



Aggregation, Forwarding & Delegation

Method Call

Object

Outer Object

Inner Object

Aggregation

Penguin 01

Object

Penguin 02

Object

Penguin 03

has_child

has_child

Forward /
Delegation



Interface Syntax: Signatures

Signature: method name 
and argument Types

Object

Penguin 03

fly(location)

Interface

Class

Bird



Interface Semantics: Contracts

Fly to the location

Object

Penguin 03

fly(location)

Interface

Class

BirdDefined using:Defined using:Defined using:Defined using:
Precondition
Postcondition



Patterns
The “Observer” pattern



Frameworks

A library of classes and preinstantiated objects
Typically requires you to subclass the framework 
classes
Examples:
– Java Swing
– MFC
– IBM San Francisco



Components

Object

Penguin 03

reproduce ()

Interface

Class

Penguin
Defined using:Defined using:Defined using:Defined using:

Interface
Unit of 
deployment

Nest

Object

Penguin 04

Component

Nest 01



Part 3: Case Studies



Java Beans

Component Technology: Java
Glue Code: Java
Linking: 

– Procedure calls for initialization and setup
– Events to communicate state changes to observers



Corba

Component Technology: Any language
Glue Code: ORB facilitated remote procedure calls
Linking: 

– RPC, carrying procedure calls and events



Visual Basic and COM/DCOM

Component Technology: C++
Glue Code: Visual Basic
Linking: 

– Procedure calls



Competitiveness Marketplace

Component Technology: Tcl
Glue Code: HTML (.adp) or TCL (.tcl)
Linking: 

– HTML or Tcl



Unix Tools

Component Technology: C
Glue Code: Bash, Perl, …
Linking: 

– Program execution
– TCP or Unix pipes



Part 4: Exercises



Exercises

Use the guidelines on the next slide to develop 
component architectures for the following 
applications:
The Competitiveness.com “Capacity Exchange” 
application
The CarConfigurator:
http://www.fraber.de/projects/car_config/
The Microsoft office family (Word, Excel, 
PowerPoint)



Component Library Guidelines
- Application scenarios: Decide on the specificity/generality of your 

library. Decide for your type of target application. Try to stay
more on the "specific" side, because specific components tend 
to be faster to develop.

- Decide about the granularity of your component library. Make 
sure that all components in your library are of the same level. 
Group your components into several libraries if you identify 
several levels. Define the following:
- Unit of abstraction
- Unit of accounting
- Unit of analysis
- Unit of compilation
- Unit of delivery
- Unit of dispute
- Unit of extension
- Unit of fault containment
- Unit of instantiation
- Unit of loading
- Unit of locality
- Unit of maintenance
- Unit of system management

- Are there already component libraries available in your 
application scenario? Name them and fill out the following 
questions for each for them:
- What is the scenario/granularity of the library?
- What technology are they based on?
- Why are these libraries not applicable in your context?
- Analyze their design and identify their characteristics. 
- What can you learn from their design for your library?
- How could you otherwise take advantage of them?

- How should the contracts for your component look like? Identify
common/repeated parameters/objects in the contract 
specifications. Write some sample contracts and specify the 
interfaces for them.

- Identify the language/formalism to implement your components 
and your "Glue Code".
- What is component code and what is glue code?
- How are you going to specify the component interfaces?
- How are you going to deal with version changes in 
components?

- Persistence and data storage: Do your components have to deal 
with persistent storage? How are you going to interface with the
storage? Are there problems with transactions/concurrency or 
atomicity?

- Inheritance: How are you going to deal with inheritance? How 
are you going to enforce a shallow inheritance hierarchy?


