
Header

Building ArsDigita Portals #2
Frank Bergmann <fbergmann@competitiveness.com>

Barcelona, March 1st, 2001



Content

� Recap: ACS Architecture
� Reliable Web Services
� AOLServer
� AOLServer against Apache
� ACS Application Architecture

� How To Build Your Portal
� Define the Project
� Setup an ACS Server
� Build a First ACS Portal
� What Went Wrong?
� Form Your Community
� Build Custom Modules
� Make Money



Recap: ACS Architecture

� Reliable Web Services
� AOLServer
� AOLServer against Apache
� Connection Pooling
� ACS Application Architecture

4. ACS Architecture



Reliable Web Services: Server Performance

# Users

Server 
Performance

Pmax

Ideal

Good

Normal
Microsoft

Bad



Reliable Web Services: Problems

� Behaviour under heavy load
� Trashing
� Memory overflow
� Infinitely growing queues

� Thread programming
� Forgot to lock critical regions
� Deadlocks
� Too many/too few threads

� Continuus running processes
� Memory leeks
� Maintenance at runtime

http://www.arsdigita.com/asj/arsdigita-server-architecture



Reliable Web Services

Philip Greenspun:
� „Leave the hard stuff of concurrency control and 
transaction atomicity to a standard relational 
database management system (RDBMS)“
� „Develop pages in a safe interpreted language“

=>
� It´s good to know about threads, but the more you 
know, the more you rely on working solutions
� Systems under heavy load behave very differently. 
For example,  WindowsNT & IIS still run out of 
memory under heavy load

http://www.arsdigita.com/asj/arsdigita-server-architecture



AOLServer: Context

Internet

Internet Server

WWW
Server

Oracle
Database

Application Code

WWW Clients



AOLServer

Traditional CGI architecture.
20 requests per second for 
database-backed pages = 40 
new programs started per 
second. 

AOLserver architecture.
Database connection-pooling:
20 requests per second for 
database-backed pages = 0 
new programs started per 
second



AOLServer against Apache

Apache
� Maintained by Apache 
Group 
� Modular
� Feature rich: Virtual 
Servers, fancy 
autentication, …
� DB driver part of CGI 
program

AOLServer
� Maintained by AOL

� Monolithic
� Designed for one 
purpose: being fast

� DB driver part of server

http://www.arsdigita.com/asj/aolserver/introduction-1.html



Connection Pooling

� Normally, Oracle 
spawns a new 
thread/process for each 
incomming connection
� Connection setup is 
slow.
� A limited number of 
connections reduces 
the maximum 
workload.



ArsDigita Application: Context

Internet

Internet Server

WWW
Server

Oracle
Database

Application Code

WWW Clients



ArsDigita Application

. . .

AOLServer Oracle Driver

AOL Core & Libraries

App.
Module

App.
Module

App.
Module

Modules consist of:
� TCL code for dynamic 
pages
� SQL code for DB queries
� SQL Code to create data 
model

=> See 2nd part of the talk



Disadvantages

� Disadvantages:
� It´s not Java
� Not very well suited to deal with XML
� Not very well suited to deal with complex 
business logic.

http://www.arsdigita.com/asj/arsdigita-server-architecture



Summary

� ACS Architecture designed for being:
� on the Web
� fast
� reliable
� easy to learn/program

� But:
� Oracle 8i and Linux need a SysAdmin and
� I would program a math problem in Java/C++

http://www.arsdigita.com/asj/arsdigita-server-architecture



5. How To Build Your Portal? 

How to Build Your Portal?

� Define the Project
� Setup an ACS Server
� Build a First ACS Portal
� What Went Wrong?
� Form Your Community
� Build Custom Modules
� Make Money



Driving School Portal
Case Study

� Idea
� Target Group
� Why Join the Portal?
� Additional Contents
� Which ACS Modules?
� Marketing
� Make Money

Define the Project



Setup an ACS Server

What to do?

1. Learn some Linux
2. Learn TCL
3. Learn SQL
4. Get a Linux server
5. Install ArsDigita
6. Install Oracle

How to do?

� Install Linux at home 
� ACS problem set 1
� ACS problem sets 1 & 2
� PC with 128MByte RAM
� Read online doku
� Read online doku

Get together with some friends who have done it already



Build a First ACS Portal 

1. Get an idea of what you want to build
2. Define a web design
3. Configure some existing modules
4. Make some small changes to the modules
5. See why nobody is using your portal
6. GOTO 1

or continue with next slide



What Went Wrong? 

� “Nobody likes to enter an empty bar” effect:
� Create artificial “noise”
� Ask your friends to participate
� Actively form your community

� Application modules doesn’t 100% fit your needs:
� Analyze in detail user behavior (ask your 

girlfriend/boyfriend)
� Build custom modules



Form Your Community

What to do?

1. Setup an initial 
community

2. Make people stay 
in your portal

3. Attract/maintain 
users

How to do?

� Tell your friends to participate

� Get killer content
� Design apps for people to stay
� Make “Strategic Partnerships”
� Import contents from other sites

� Assure high quality/usability
� Remove old/bad contents



Build Custom Modules

1. Get an idea of what you want to build
2. Define a web design
3. Make a “Wemo” (=Workflow Demo) for new 

modules
� Present the Wemo to friends & family. 
� The Wemo will save a lot of time during 

development.
4. Configure some exiting modules
5. Make an interaction model
6. Make a data model. 
7. Write the TCL pages
8. Test the system together with some friends
9. See why nobody is using your portal
10.GOTO 1



Make Money 

� Making money with a portal today is nearly 
impossible.

� You can try to sell your portals to people who still 
believe they can make money…



6. Related Literature

� Ars Digita: http://www.arsdigita.com/
� TCCG: http://www.competitiveness.com/
� ACS Documentation: 
http://www.arsdigita.com/doc/
� The Online Bible: 
http://www.arsdigita.com/books/panda/


